Latent toxoplasmosis is associated with neurocognitive impairment in a cohort of young adults with chronic HIV infection from Romania

Authors: Ene L¹, Marcotte T² Grancea C³, Temereanca A³, Luca A¹, Bharti A², Umlauf A², Achim CL², Letendre S ², Ruta SM³

¹ ”Dr. Victor Babes” Hospital for Infectious and Tropical Diseases, Bucharest, Romania

² HIV Neurobehavioral Research Program, University of California San Diego, San Diego, USA

³ ”Stefan S. Nicolau” Institute of Virology, Bucharest, Romania
"Toxoplasma is a kind of marvel pathogen. It can infect everything which is warm blooded and it can be as silent as non existent in a system".
A Ubiquitous Pathogen That Keeps Its Host Healthy

The single-celled pathogen *Toxoplasma gondii* can enter the most protected parts of its host body while remaining largely undetected. In most cases it lives as a harmless tenant, but in fetuses or in people with compromised immune systems it can cause severe damage.

Host to host

While *Toxoplasma* can infect humans, other mammals, and birds, its relationship with cats is unique. Only in cats can the pathogen reproduce sexually to create egg-like cells.

Cell to cell

1. **Rapid spread**
 Within hours of infection, *Toxoplasma* can move to widely separated parts of the body. It does this by entering and controlling dendritic immune cells in the intestine.

2. **Crossing protected barriers**
 After *Toxoplasma* takes control of a dendritic cell, it can use the cell as a Trojan horse to cross protected barriers. In this way it can reach defended organs like the brain.

3. **Entering a cell**
 Toxoplasma can infect almost every type of cell. It enters by pushing against the membrane and pulling it over itself. The cell seals behind, leaving the pathogen in a protective bubble.

Sources: Antonio Barragan, Karolinska Institute and Swedish Institute for Infectious Disease Control; J. F. Dubey, Journal of the American Veterinary Medical Association
High quantities of dopamine released by *T. gondii* may be responsible for clinical behavioural changes (*PLoS One* 2011, 6:e23866)

The presence of dopamine induces increased production of tachyzoites and destruction of the cysts walls (*J Parasitol* 2012, 98:1296-1299)

Toxoplasma upregulated the miR-132 and is associated with changes in dopamine receptor signalling (*Neuroscience*. 2014 May 30;268:128-38)

During its life cycle, Toxoplasma interacts with about 3000 genes and proteins, including susceptibility genes for Alzheimer disease, Schizophrenia, and mood disorders (*J Pathog.* 2013, 965046)
Latent Toxoplasma infection was linked to psychiatric conditions & behavioral changes

- **The additional diagnosis of a personality disorder in psychiatric patients** Hinze-Selch, D., et al. (2010). Folia Parasitol (Praha) 57(2): 129-135
Latent toxoplasmosisis and cognition

- **Affecting cognitive function in certain groups** (Gale, S. D., et al. (2014). Parasitology: 1-9) → significant interactions between latent toxoplasmosisis and
 - the poverty-to-income ratio
 - educational attainment
 - race-ethnicity
Latent Toxoplasmosis – brain disturbances in HIV-infected subjects

- No significant association between positive Toxoplasma serology and psychiatric disorders (El Lakkis et. al, JAIDS (2015) 68(1) p e8-e9)
 - high baseline prevalence of psychiatric disorders
 - data collected from electronic medical records

- Older subjects with latent toxoplasmosis trended towards worse neurocognitive functioning and higher anti-Toxoplasma IgG titers were associated with worse functioning (Bharti A, et al, In: 19th International AIDS Conference. Washington DC, USA; 2012)
Objective

- We aimed to evaluate the possible contribution of latent infection with *T. gondii* on
 - neurocognitive performance
 - depression
 - suicidal risk
 - disturbances associated with frontal-subcortical circuitry damage
 - risk taking behaviours

in a group of young adults with chronic HIV infection since childhood
Methods

Study participants
- 194 HIV+ participants in the Romanian HIV Pediatric cohort who were infected with HIV in their first years of life (early 1990s) by parenteral non-IDU route
- 51 HIV- age matched participants

Neurocognitive assessment
- Standardised battery of tests assessing seven cognitive domains
- Neurocognitive impairment (NCI) was estimated using the global deficit score (GDS) with a cut-off > 0.5
- Individual test deficit scores, determined via demographically-adjusted T scores generated from a healthy population of Romanian young adults, ranged from 0 (T score of > 40) to 5 (T score < 20)
Depression, psychiatric disorders and risk taking behaviors

- The Beck II depression inventory
 - 0–13 = minimal symptoms
 - 14–19 = mild depression
 - 20–28 = moderate depression
 - 29–63 = severe depression

- The Frontal System Behaviour Scale (FrSBe)
 - 3 sub-scales: apathy, disinhibition, and executive dysfunction.

- The Risk Assessment Battery (RAB) is a self-administered, multiple choice questionnaire, assessing needle sharing practices and sexual activity associated with HIV transmission.

- MINI-International Neuropsychiatric Interview (MINI-Plus), evaluated DSM-IV criteria for current/past major depression and current/past suicidal risk
Characteristics of the participants

<table>
<thead>
<tr>
<th>Characteristics of the participants</th>
<th>HIV-(n = 51)</th>
<th>HIV+(n = 194)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (n; %)</td>
<td>28; 54.9%</td>
<td>94; 48.4%</td>
</tr>
<tr>
<td>Age (mean; SD)</td>
<td>24.2(2.4)</td>
<td>24.0 (1.5)</td>
</tr>
<tr>
<td>Education**</td>
<td>13.3 (2.6)</td>
<td>12.1 (2.8)</td>
</tr>
</tbody>
</table>

HIV characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>HIV-</th>
<th>HIV+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since estimated HIV transmission (years)¹</td>
<td>-</td>
<td>23.7; 22.8-24.4</td>
</tr>
<tr>
<td>Time since HIV-diagnosis (years)¹</td>
<td>-</td>
<td>14.8; 9.68-17.54</td>
</tr>
<tr>
<td>CD4 Current T-cells/µL¹</td>
<td>-</td>
<td>479; 273-713</td>
</tr>
<tr>
<td>CD4 nadir cells/µL¹</td>
<td>-</td>
<td>93; 22-190</td>
</tr>
<tr>
<td>Time since CD4 nadir years¹</td>
<td>-</td>
<td>6.63; 1.57-11.46</td>
</tr>
<tr>
<td>AIDS defining diseases (n; %)</td>
<td>-</td>
<td>100 (51.5%)</td>
</tr>
<tr>
<td>HIV RNA in plasma undetectable (n; %)</td>
<td>-</td>
<td>118; 58.8%</td>
</tr>
</tbody>
</table>

ART characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>HIV-</th>
<th>HIV+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently taking cART (n; %)</td>
<td>-</td>
<td>178 (91.7%)</td>
</tr>
<tr>
<td></td>
<td>HIV-(n = 51)</td>
<td>HIV+(n = 194)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Toxoplasmosis characteristic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG Toxo positive (n; %)</td>
<td>18; 35.3%</td>
<td>63; 32.4%</td>
</tr>
<tr>
<td>IgG Toxo IU/ml among positive participants</td>
<td>937; 232-1291</td>
<td>1090; 482-1604</td>
</tr>
<tr>
<td>Neurobehavioral characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDS impaired (n, %)</td>
<td>6;11.7%</td>
<td>71; 36.5%</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI-II depression score >13 (n; %)*</td>
<td>1; 1.9%</td>
<td>23; 11.8%</td>
</tr>
<tr>
<td>Major depression diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>current</td>
<td>1; 1.96%</td>
<td>6; 3.09%</td>
</tr>
<tr>
<td>past</td>
<td>7; 13.72%</td>
<td>29; 14.94%</td>
</tr>
<tr>
<td>FrSBe (n, %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apathy raw*</td>
<td>24.0; 6.1</td>
<td>26.6; 7.4</td>
</tr>
<tr>
<td>Disinhibition Raw Score</td>
<td>24.3; 6.6</td>
<td>25.4; 7.5</td>
</tr>
<tr>
<td>Executive dysfunction*</td>
<td>30.2; 8.2</td>
<td>33.2; 8.5</td>
</tr>
<tr>
<td>Total raw*</td>
<td>44.5; 13.2</td>
<td>48.5; 13.7</td>
</tr>
<tr>
<td>Suicidal risk (n; %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current *</td>
<td>0; 0.0%</td>
<td>14; 7.2%</td>
</tr>
<tr>
<td>Past *</td>
<td>1; 1.9%</td>
<td>23; 11.8%</td>
</tr>
</tbody>
</table>
Latent Toxoplasma infection may result in increased cognitive difficulties in co-infected individuals.

Anti-Toxoplasma antibodies were associated with a 60% increased relative risk of NCI ($\chi^2 = 6.3$, RR = 1.6, $P=0.001$).
Multivariable models examining cognitive performance (GDS and T scores) using 2-way ANOVAS and logistic regression

Controlling for HIV

<table>
<thead>
<tr>
<th></th>
<th>HIV-/Toxo-</th>
<th>HIV-/Toxo+</th>
<th>HIV+/Toxo-</th>
<th>HIV+/Toxo+</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDS (sqrt)</td>
<td>0.20 (.21)</td>
<td>0.29 (31)</td>
<td>0.44 (.44)</td>
<td>0.59 (.48)</td>
<td>HIV***, Toxo*</td>
</tr>
<tr>
<td>Mean</td>
<td>50.5 (5.1)</td>
<td>48.7 (6.4)</td>
<td>47.3 (6.1)</td>
<td>44.8 (5.5)</td>
<td>HIV***, Toxo**</td>
</tr>
<tr>
<td>Executive</td>
<td>50.8 (6.5)</td>
<td>50.0 (7.1)</td>
<td>47.4 (7.2)</td>
<td>45.7 (7.6)</td>
<td>HIV**</td>
</tr>
<tr>
<td>Verbal</td>
<td>50.1 (8.5)</td>
<td>47.8 (7.3)</td>
<td>50.3 (7.5)</td>
<td>47.7 (6.9)</td>
<td></td>
</tr>
<tr>
<td>Working Memory</td>
<td>50.0 (7.5)</td>
<td>50.3 (11.2)</td>
<td>45.9 (9.6)</td>
<td>44.3 (9.2)</td>
<td>HIV**</td>
</tr>
<tr>
<td>Learning</td>
<td>50.7 (81)</td>
<td>49.0 (9.7)</td>
<td>46.3 (9.1)</td>
<td>43.2 (8.1)</td>
<td>HIV***, Toxo*</td>
</tr>
<tr>
<td>Memory</td>
<td>50.5 (7.5)</td>
<td>49.4 (10.5)</td>
<td>46.4 (9.8)</td>
<td>42.4 (10.2)</td>
<td>HIV***, Toxo**</td>
</tr>
<tr>
<td>Motor</td>
<td>49.5 (9.1)</td>
<td>48.8 (7.7)</td>
<td>46.4 (9.5)</td>
<td>44.3 (10.6)</td>
<td>HIV*</td>
</tr>
<tr>
<td>SIP</td>
<td>50.9 (6.3)</td>
<td>47.2 (7.4)</td>
<td>47.2 (7.9)</td>
<td>44.2 (7.0)</td>
<td>HIV**, Toxo **</td>
</tr>
</tbody>
</table>

* p < .05 , ** p < .01 , *** p < .001
Effects of toxoplasma on NCI within the HIV+ group with undetectable HIV load (n=118)

* * * *

*p<0.05
Relationship between Toxo status and risk behaviors

<table>
<thead>
<tr>
<th>FrSBe (raw score)</th>
<th>HIV-/Toxo-</th>
<th>HIV-/Toxo+</th>
<th>HIV+/Toxo-</th>
<th>HIV+/Toxo+</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apathy</td>
<td>24.1 (6.2)</td>
<td>23.8 (6.3)</td>
<td>26.8 (7.1)</td>
<td>26.1 (8.1)</td>
<td>0.14</td>
</tr>
<tr>
<td>Disinhibition</td>
<td>24.4 (6.7)</td>
<td>24.1 (6.6)</td>
<td>26.1 (7.6)</td>
<td>23.9 (7.1)</td>
<td>0.20</td>
</tr>
<tr>
<td>Executive</td>
<td>30.8 (7.9)</td>
<td>29.1 (8.9)</td>
<td>33.6 (8.7)</td>
<td>32.3 (8.0)</td>
<td>0.08</td>
</tr>
<tr>
<td>Total</td>
<td>79.2 (18.5)</td>
<td>76.9 (20.2)</td>
<td>86.4 (20.7)</td>
<td>82.3 (20.5)</td>
<td>0.10</td>
</tr>
<tr>
<td>Drug use (% none)</td>
<td>96.7%</td>
<td>94.4%</td>
<td>96.2%</td>
<td>96.8%</td>
<td>0.87</td>
</tr>
<tr>
<td>Sex activity (median, IQR)</td>
<td>4 (2.5,5)</td>
<td>4 (2,5)</td>
<td>2 (2.4)</td>
<td>2 (0.3)</td>
<td><0.001*</td>
</tr>
</tbody>
</table>

Regression models:
- HIV & Toxo: no effect
- HIV: higher apathy (p=0.023), executive (p=0.019), and total (p=0.034)
- Toxo: no effect

* HIV-ve participants had higher sexual risk-taking behaviours
No effect of latent toxoplasmosis

- current or past depression
- current or past suicidal risk

Based on MINI-Plus evaluation
Relationship between Toxo IgG levels
cognitive performance & behavioral changes

The group with lower levels of Toxo IgG had

• **higher** disinhibition (25.9 [7.8] vs. 21.7 [5.5], \(p=0.016 \))
• **higher** dysexecutive functioning (34.3 [9.0] vs. 30.1 [6.1], \(p=0.036 \))
• **higher** percentage of individuals with at least mild depression on the BDI (24.2% vs. 3.3%, \(p=.028 \)).
Discussion (1)

1. Toxo and cognitive performances
 - Detectable anti-Toxoplasma IgG antibodies were associated with a greater risk of NCI in HIV+ and HIV-participants

 Latent Toxoplasmosis can be a potential confounder in attributing the cause of NCI to HIV

2. Latent Toxo infection was not associated with
 - risk behaviours
 - major depression
 - suicidal thoughts
Discussion (2)

- Lower Toxo levels were associated with higher NCI rates and indicators of frontal systems dysfunction. **Toxoplasma may exert its negative effects as a result of slow and cumulative effects.**
- Further studies and a longitudinal follow-up are warranted to determine the long-term impact of latent toxoplasmosis on NCI and also in behavioural changes and psychiatric conditions of HIV-infected patients.
Acknowledgements

VBH team
Dan Duiculescu
Roxana Radoi
Ruxandra Burlacu
Gratiela Tardei
Simona Tetradov
Stefan Anton
Cosmina Gingaras
Anca Luca
Adina Talnariu (Bulacu)
Andreea Blaglosov
Adrian Luca
Silvia Suciu
Diana Sima

HNRC team
Cristian Achim
Tom Marcotte
Ron Ellis
Igor Grant
Davey Smith
Sanjay Metha
Scott Letendre
Terence Hendrix
Donald Franklin
Anya Umlauf
Reena Deutsch

IVN team
Simona Ruta
Aura Temereanca
Carmen Diaconu
Camelia Grancea

Study participants

This work was supported by:
1R01MH094159
R21 MH0077487 P30
MH62512 from NIMH
and intramural funding from the HNRC International Core at UCSD