MALIGNANCIES

S. De Wit
CHU Saint Pierre
Brussels
HIV and cancer

- **AIDS-defining malignancies:**
 - Kaposi’s sarcoma
 - Non Hodgkin lymphoma (1985)
 - Cervical cancer (1993)

- **Non AIDS-defining malignancies (NADM) is increasing**
 - Linked with virus HPV (Anal), HBV and HCV (Liver), EBV (HL)
 - Linked with previous immunodeficiency and other factors
Background

• Before introduction of HAART, ADCs common, including Kaposi’s sarcoma, NHL, and invasive cervical carcinoma

• Rate of ADCs significantly increased from early to late pre-HAART era and then significantly decreased following introduction of HAART

• Rates of nADCs stable during pre-HAART eras and then significantly increased following introduction of HAART

SIR = Standardised Incidence Ratio

\[
\text{SIR} = \frac{\text{Nb cases of cancer in the HIV population}}{\text{Expected nb of cases in the general population, calculated with local cancer registry incidence}}
\]
Cancer burden in the HIV population in the US

A) US AIDS population by calendar year and age group.
B) The estimated counts and standardized rates of AIDS-defining cancers among people living with AIDS in the United States by calendar year and age group.
C) The estimated counts and standardized rates of non-AIDS-defining cancers among people living with AIDS in the United States by calendar year and age group.
D) The estimated counts and standardized incidence rates of total cancers among people living with AIDS in the United States, stratified by AIDS-defining cancers, non-AIDS defining cancers, and poorly specified cancers.

Bars depict the estimated number of cancers, and points connected by lines depict incidence rates standardized.

A) Estimated counts (ie, number of cancers) and standardized incidence rates of Kaposi sarcoma.
B) Estimated counts and standardized incidence rates of non-Hodgkin lymphoma.
C) Estimated counts and standardized incidence rates of cervical cancer among women.

Bars depict the estimated counts and points connected by lines depict the incidence rates standardized to the 2000 US AIDS population by age group, race, and sex. Trends in cancer counts and rates were estimated with linear regression. Two-sided P values were calculated using the χ^2 test.
Cancer Incidence in AIDS Patients

- Study of cancer risk in AIDS patients from 1980-2006 (N=372,364)
- Predominantly male (79%), non-hispanic black (42%), MSM (42%)
- Median age of 36 years at the onset of AIDS

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>No. cases</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>3136</td>
<td>5321</td>
<td>5137 - 5511</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3345</td>
<td>32</td>
<td>31 - 33</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>101</td>
<td>5.6</td>
<td>5.5 - 6.8</td>
</tr>
<tr>
<td>Non-AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal cancer</td>
<td>219</td>
<td>27</td>
<td>24 - 31</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>86</td>
<td>3.7</td>
<td>3.0 - 4.6</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>531</td>
<td>3.0</td>
<td>2.8 - 3.3</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>184</td>
<td>9.1</td>
<td>7.7 - 11</td>
</tr>
<tr>
<td>All non-AIDS related cancers</td>
<td>2155</td>
<td>1.7</td>
<td>1.5 - 1.8</td>
</tr>
</tbody>
</table>

SIR=Standardized Incidence Ratios

Simard E, et al. 17th CROI; San Francisco, CA; February 16-19, 2010. Abst. 27.
Types and risk factors for AIDS-defining malignancies (ADM) and non-ADM studied in D:A:D
- 23,447 HIV+ patients; 104,691 person-years of F/U

Fatal non-ADM have become more common than ADM

Incidence of both non-ADM and ADM increases with lower CD4+ cell count but is not affected by HIV RNA

Current smokers had a 2.92-fold higher risk of fatal non-ADM than those who never smoked (risk for ex-smokers 2.02-fold higher)
Increased rates of nADCs. Why?

- Increasing survival of patients with HIV might be associated with an increase of traditional cancer
- Aging of the HIV population
- Long-term toxicity of ART?
Increased rates of nADCs. Why?

Other possible explanations:
• Confounding by shared lifestyle cancer risk factors

 Tobacco use
 – MSM have nearly double the rate of tobacco use compared to all U.S. men: 48% vs 29% (Stall 1999)

 – A role of HIV through its effect on immune deficiency

Importance:
– If immune deficiency is responsible, then avoiding or reversing immune deficiency might decrease cancer risk
Cancers in HIV and transplant patients

• The range of cancers occurring at increased rates is strikingly similar in the two groups

• Mostly those known or suspected to be caused by infective agents

• Impact of immunodeficiency on these cancers
Characteristics of cancer immune control

• CD4 cell count
• CTL function
• NK
• Immune memory Central/effecter memory
• Level of immune activation:
 – PD-1, IL-10, Treg
• Immune system on pre-cancerous lesions
IL6 & cancer

- Increased incidence of cancers in the intermittent treatment arm of SMART, associated with increase in of plasma levels of D-dimers & IL6

- IL6 is an important component of autocrine and paracrine circuits that fuel the growth of solid tumors at all stages. (initiation, promotion, progression and dissemination)

- In the general population elevated level of IL6 is associated with increased risk of developing cancers.

- IL6 gene polymorphisms are associated with colorectal, cervical & oral cancer.
Non-AIDS defining cancers
NADCs in HIV+ Patients compared to Cancer in HIV (-) Patients

• Occur at a younger age (?)
• Atypical pathology, higher tumor grade
• Diagnosed at more advanced stage
• More aggressive disease course
• Poorer outcomes
• Higher rate of relapse
Hodgkin disease
Cancer Incidence in AIDS Patients

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>No. cases</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>3136</td>
<td>5321</td>
<td>5137 - 5511</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3345</td>
<td>32</td>
<td>31 - 33</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>101</td>
<td>5.6</td>
<td>5.5 - 6.8</td>
</tr>
<tr>
<td>Non-AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal cancer</td>
<td>219</td>
<td>27</td>
<td>24 - 31</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>86</td>
<td>3.7</td>
<td>3.0 - 4.6</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>531</td>
<td>3.0</td>
<td>2.8 - 3.3</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>184</td>
<td>9.1</td>
<td>7.7 - 11</td>
</tr>
<tr>
<td>All non-AIDS related cancers</td>
<td>2155</td>
<td>1.7</td>
<td>1.5 - 1.8</td>
</tr>
</tbody>
</table>

SIR=Standardized Incidence Ratios

Simard E, et al. 17th CROI; San Francisco, CA; February 16-19, 2010. Abst. 27.
HIV and Hodgkin’s Lymphoma

• Due to co-infection with EBV
 – Co-infection rates 75 to 100%, vs 20 to 50% in HIV neg HL

• More aggressive disease
 – histology: mixed cellularity, lymphocyte depleted
 – B symptoms present (fevers, sweats, weight loss)
 – Extra-nodal disease common (75 to 90%)
 – Bone marrow involvement common (40 to 50%)

• Effect of HAART therapy on risk unclear, contradictory

Risk of Hodgkin lymphoma by CD4 count

Table 1. Incidence of Hodgkin lymphoma by CD4$^+$ count, adjusted for sex, age, AIDS diagnosis and HIV viral load: French Hospital Database.

<table>
<thead>
<tr>
<th>Current CD4$^+$ count (cells/μl)</th>
<th>Incidence rate per 1000 person years (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>500</td>
<td>0.2 (0.1–0.3)</td>
</tr>
<tr>
<td>350–499</td>
<td>0.3 (0.2–0.5)</td>
</tr>
<tr>
<td>200–349</td>
<td>0.6 (0.4–0.8)</td>
</tr>
<tr>
<td>100–199</td>
<td>1.2 (0.8–1.8)</td>
</tr>
<tr>
<td>50–99</td>
<td>2.4 (1.5–3.7)</td>
</tr>
<tr>
<td>0–49</td>
<td>1.9 (1.1–3.2)</td>
</tr>
</tbody>
</table>

Adapted from data from [42].
Hepatocellular carcinoma
Cancer Incidence in AIDS Patients

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>No. cases</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>3136</td>
<td>5321</td>
<td>5137 - 5511</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3345</td>
<td>32</td>
<td>31 - 33</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>101</td>
<td>5.6</td>
<td>5.5 - 6.8</td>
</tr>
<tr>
<td>Non-AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal cancer</td>
<td>219</td>
<td>27</td>
<td>24 - 31</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>86</td>
<td>3.7</td>
<td>3.0 - 4.6</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>531</td>
<td>3.0</td>
<td>2.8 - 3.3</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>184</td>
<td>9.1</td>
<td>7.7 - 11</td>
</tr>
<tr>
<td>All non-AIDS related cancers</td>
<td>2155</td>
<td>1.7</td>
<td>1.5 - 1.8</td>
</tr>
</tbody>
</table>

SIR=Standardized Incidence Ratios

Simard E, et al. 17th CROI; San Francisco, CA; February 16-19, 2010. Abst. 27.
HIV and Liver Cancer

- Incidence rate 7 times higher in HIV + in some series
- Due to Hepatitis B and C co-infection
- Lower risk in HIV patients on HAART (Only NADC)
- Higher risk of extrahepatic metastases, poorer outcome
- Treatment with transplantation complicated

HPV induced cancers
Cancer Incidence in AIDS Patients

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>No. cases</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>3136</td>
<td>5321</td>
<td>5137 - 5511</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3345</td>
<td>32</td>
<td>31 - 33</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>101</td>
<td>5.6</td>
<td>5.5 - 6.8</td>
</tr>
<tr>
<td>Non-AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal cancer</td>
<td>219</td>
<td>27</td>
<td>24 - 31</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>86</td>
<td>3.7</td>
<td>3.0 - 4.6</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>531</td>
<td>3.0</td>
<td>2.8 - 3.3</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>184</td>
<td>9.1</td>
<td>7.7 - 11</td>
</tr>
<tr>
<td>All non-AIDS related cancers</td>
<td>2155</td>
<td>1.7</td>
<td>1.5 - 1.8</td>
</tr>
</tbody>
</table>

SIR=Standardized Incidence Ratios
100 genotypes infect humans

40 genotypes infect genital tract

Low risk HPV genotypes:
6 and 11 give warts
HPV-induced cancers

HPV DNA in

- Cervix 99%
- Anus 84%
- Vagina 70%
- Vulva 40%
- Penis 47%
- Oro-pharyngal 35%

High-risk HPV genotypes: 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68
Human defenses against Papillomavirus

- No cell death
- No inflammation
- No ulcer, no exudate
- No antigen presenting cell

- HPV has immune evasion capability

- Weak antibody response in 50-90% of persons

- Transmission by
 - Genital contact
 - Skin contact
 - Self inoculation
In vitro
Tat protein favors HPV E6+7 expression
Vernon. Virus Res 1993

Ex vivo:
HIV tat, gp120, TNF-a and/or IFNg disrupt epithelial tight junctions and potentiate HPV penetration and infection
Incidence du Cancer Cervical dans le monde (/100,000 habitants)

Epidemiology of invasive cervical cancer per /100,000 women year

From Globocan 2008

<table>
<thead>
<tr>
<th>Region</th>
<th>Incidence (new cases/year)</th>
<th>Mortality (deaths/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>530,000</td>
<td>275,000</td>
</tr>
<tr>
<td>Less developed regions</td>
<td>453,000</td>
<td>242,000</td>
</tr>
<tr>
<td>More developed regions</td>
<td>76,000</td>
<td>32,000</td>
</tr>
</tbody>
</table>

Age-standardised incidence rates per 100,000
Epidemiology of invasive cervical cancer per 100,000 women year

Eastern Europe (incidence/100,000 women year)

- Romania 24
- Bulgaria 22
- Serbia 21
- Macedonia 22

GLOBOCAN 2008, International Agency for Research on Cancer
Interactions between HIV & HPV

- Infection with HIV facilitates infection with HPV and HPV-induces lesions

- Infection with HPV facilitates acquisition of HIV
 1. MSM
 2. Femmes
 3. Hommes Hetero
Infection with oncogenic HPV in HIV women

• Prevalence is higher: **20-40%** (vs. 5-10%)

• **Multiple** genotypes: **40%** (vs. 12%)

• New infection? **Reactivation** of latent infection

• Linked with younger age, lower CD4 and higher HIV VL

Strickler. *Journal of the National Cancer* 2005
Cancer screening – EACS

<table>
<thead>
<tr>
<th>Problem</th>
<th>Patients</th>
<th>Procedure</th>
<th>Evidence of benefits</th>
<th>Screening interval</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>Women 50–70 yrs</td>
<td>Mammography</td>
<td>↓breast cancer mortality</td>
<td>1–3 years</td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>Sexually active women</td>
<td>Papanicolaou test, HPV DNA test</td>
<td>↓cervical cancer mortality</td>
<td>1–3 years</td>
<td>Target age group should include at least the age range 30 to 59 years. Longer screening interval if prior screening tests repeatedly negative</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Persons 50–75 yrs</td>
<td>Fecal Occult Blood test</td>
<td>↓colorectal cancer mortality</td>
<td>1–3 years</td>
<td>Benefit is marginal</td>
</tr>
</tbody>
</table>
Treatment of cervical lesions in HIV-infected women

- **CIN 2+**
 - Conisation
 - Follow up biopsies: twice the 1st year
 - *Indication of cART?*

- **CIN 1**
 - 30% will regress spontaneously
 - Follow up: every 6 months
 - If persistant after 1-2 years or progression: treat
 - *Indication of cART?*
Annual incidence rates of anal cancer among HIV-infected persons (circles) and the general population (squares), USA 1992-2003.
Anal Cytology Screening for AIN in HIV-positive patients

- **Screening Pap**
 - **Normal**: Repeat in 12 months
 - **ASCUS**: Anoscopy with biopsy
 - **LSIL**: LSIL
 - Treat or follow
 - **HSIL**: HSIL
 - Treat

Anal cancer screening in HIV+ MSM: Saint-Pierre cohort

353 MSM HIV+

90% Caucasians

- Median age: 44.5 years
- 83% on ARV and viral load (VL)<20 cp/ml: 74%
- Median CD4: 632/µl
- Nadir CD4: <200=33%; <100=17%
- HIV median follow-up 8 years, Median ARV duration 7 years

Screened by cytology between June 2011 and May 2012.

High resolution anoscopy

33 (9.3%) excluded (poor quality) → 320 smears analysed

In patients with normal cytology:

- VL more frequently undetectable (82% vs 64%, p=.0003, ua)
- Median duration of HAART longer (111 vs 61 months, p=.0145, ua)
- no correlation was found for age, current or nadir CD4

46% abnormal (n=147)

- HSIL 3%
- LSIL 24%
- ASC-US 16%
- ASC-H 3%

Anal lesions in HIV-infected patients

- **AIN1:**
 - close follow up (6 months)
 - unless symptoms: no treatment
 - *Indication of cART?*

- **AIN2+:** treat
 - Topical treatment
 - In lesions < 1cm²
 - In multifocal lesions as adjunctive to ablation
 - *Indication of cART?*
Oral Cavity and Pharynx Cancer

• Oral cavity and pharynx cancers are uncommon cancers mostly attributable to tobacco and alcohol
• Human papillomavirus (HPV) is an etiologic factor in a subset of oral cavity/pharynx cancers
• Some studies suggest HIV-infected individuals have an elevated risk of oral cavity/pharynx cancers
 – HIV-related immunosuppression may promote HPV infection; oral HPV prevalence is higher in HIV-infected individuals
 – HIV-infected might have higher rates of smoking and other behaviours

D’Souza et al., 2007
Beachler et al., 2012
In summary

• Screening should be improved for cervical and anal cancer (in both men & women).
• Preventive vaccination against HPV should be more extensively studied and applied in HIV patients
• HPV-induced cancers are not reduced after cART introduction but...
cART impact on HPV infection and induced lesions

- Immune restoration by cART against HPV takes several years (>3 years) of undetectable VL and need high CD4 cell count :>500/µL
- Decreasing AIN incidence might take >4 years of cART
- Longer HIV survival increases exposure to HPV: both newly acquired and persistent infection previously acquired may last longer
Lung cancer
Cancer Incidence in AIDS Patients

<table>
<thead>
<tr>
<th>Cancer type</th>
<th>No. cases</th>
<th>SIR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>3136</td>
<td>5321</td>
<td>5137 - 5511</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>3345</td>
<td>32</td>
<td>31 - 33</td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>101</td>
<td>5.6</td>
<td>5.5 - 6.8</td>
</tr>
<tr>
<td>Non-AIDS-defining cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal cancer</td>
<td>219</td>
<td>27</td>
<td>24 - 31</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>86</td>
<td>3.7</td>
<td>3.0 - 4.6</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>531</td>
<td>3.0</td>
<td>2.8 - 3.3</td>
</tr>
<tr>
<td>Hodgkin lymphoma</td>
<td>184</td>
<td>9.1</td>
<td>7.7 - 11</td>
</tr>
<tr>
<td>All non-AIDS related cancers</td>
<td>2155</td>
<td>1.7</td>
<td>1.5 - 1.8</td>
</tr>
</tbody>
</table>

SIR=Standardized Incidence Ratios
Estimates of lung cancer risk associated with HIV infection
Excess of risk of lung cancer in HIV

• Hypotheses for causal factors...
 – increased frequency of smoking in HIV population, but intensity and duration not different
 – HIV status seems probable, but the mechanisms remain unknown:
 • degree of immune deficiency
 • duration of immune deficiency
 • oncogenic role of HIV *per se*
 • other oncogenic virus
 • role of HAART

Cadranel, Respiration 1999; Bower, AIDS 2004
Lung Cancer

• Most frequent NADC in HAART era
• Incidence 2-4 fold higher than general population
 – SIRS between 2 and 3 and stable over time
• Diagnosed at younger age with advanced disease and primarily in smokers
• Adenocarcinoma is most frequent sub-type
• No clear screening strategy
• No argument to treat differently than non-HIV infected patients
Breast cancer
Breast cancer

• No higher incidence in HIV-positive women

• There might even be a lower incidence:
 – Significant decrease in relative risk (observed cases/expected cases based incidence in general population). *Frisch. JAMA* 2001
Why breast cancer could be less frequent in HIV women?

• Reduced incidence is also found in other immunosuppressed patients

Suggesting that physiological immune response could be a facilitating factor in breast carcinogenesis

• Hormone production is reduced in HIV patients: oestradiol or testosterone

Why breast cancer could be less frequent in HIV women?

• CXCR4-tropic HIV is protective against breast cancer because
 – In vitro: this receptor is highly expressed by tumor cells and CXCR4 HIV induces tumor cells apoptosis
 Endo M. *Curr HIV Res* 2008
 – In vivo: decreased incidence of breast cancer when compared to CCR5 HIV-infected patients

• Ritonavir has been studied in preclinical trials for its activity against breast cancer growth
Breast Cancer

• When occurs:
 – Higher rate of bilateral disease
 – Histology more likely poorly differentiated
 – Early metastasis

Pantanowitz 2003, Gewurz 2005
Cancer screening – EACS

<table>
<thead>
<tr>
<th>Problem</th>
<th>Patients</th>
<th>Procedure</th>
<th>Evidence of benefits</th>
<th>Screening interval</th>
<th>Additional Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>Women 50–70 yrs</td>
<td>Mammography</td>
<td>↓breast cancer mortality</td>
<td>1–3 years</td>
<td></td>
</tr>
<tr>
<td>Cervical cancer</td>
<td>Sexually active women</td>
<td>Papanicolau test, HPV DNA test</td>
<td>↓cervical cancer mortality</td>
<td>1–3 years</td>
<td>Target age group should include at least the age range 30 to 59 years. Longer screening interval if prior screening tests repeatedly negative</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Persons 50–75 yrs</td>
<td>Fecal Occult Blood test</td>
<td>↓colorectal cancer mortality</td>
<td>1–3 years</td>
<td>Benefit is marginal</td>
</tr>
</tbody>
</table>
Kidney Cancer

• Incidence rate 2 times higher in HIV+ and 5.8 times higher in patients with AIDS

• Has not gone down during HAART era

• Etiology unclear:
 – Immune deficiency (Immune therapy (IFN, IL) central to treatment)
 – Kidney damage from ART?

Engels 2006, Layman 2008
Colorectal Cancer

• Increased risk in HIV+ pts: 1.0 to 2.3

• Higher rates of precursor lesions in HIV+ pts
 – Higher rates of adenomas
 – Larger adenomas (>10mm)
 – Poor histology: villous, high-grade dysplasia

• Younger age at diagnosis
 – mean of 41 years in one series

Bini 2006, Yeguez 2003
Prostate cancer

- Conflicting data on SIR: 0.69 – 2
- Low SIR could be due to lack of screening
- HIV+ prostate cancers patients are diagnosed at a similar stage but have reduced survival
- No specific recommendations for screening
Other Malignancies

• Non-melanomatous skin cancer
• Conjunctival cancer
• Sarcoma
• Melanoma
• Germ cell tumors
• Other hematopoietic neoplasms including myeloma and leukemia
• Many present with advanced disease at diagnosis
HAART and chemotherapy

• Many patients will receive HAART and chemotherapy concurrently with high likelihood of drug interactions

• Protease inhibitors and non-nucleoside reverse transcriptase inhibitors are substrates and potent inhibitors or inducers of cytochrome P450 system (CYP)
 – Many anti-neoplastic drugs also metabolized by CYP system leading to either drug accumulation and possible toxicity or decreased efficacy
 • Paclitaxel and docetaxel
 • Vinca alkaloids
Considerations in Treating NADCs with chemotherapy in HIV-positive Patients

• Overlapping Toxicities

• Drug-Drug Interactions
 – Transporters
 – Enzymes (CYP450, etc)
Chemotherapy and HAART Toxicities

– Myelosuppression
 • Zidovudine
– Nephrotoxicity
 • tenofovir, protease inhibitors
– Nausea
 • protease inhibitors, zidovudine,
– Diarrhea
 • lopinavir
– Hepatotoxicity
 • all NNRTIs, all PIs, and all NRTIs
HAART – Chemotherapy Interactions

• Enzymes (CYP450, etc)
 – CYP3A4 especially

• Transporters
 – up-regulated by cancer cells when exposed to chemotherapy, inducing a ‘multi-drug resistance’ phenotype
 – Some ARV’s induce the same mechanisms (P-gp, MRP 1)
Chemotherapy and HAART

<table>
<thead>
<tr>
<th>Enzyme/Transporter</th>
<th>HAART Inhibitors</th>
<th>HAART Inducers</th>
<th>Chemotherapy Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP3A4</td>
<td>delavirdine, efavirenz, ritonavir, amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, saquinavir</td>
<td>nevirapine, efavirenz</td>
<td>paclitaxel, docetaxel, erlotinib, sunitinib, sorafenib, etoposide, vincristine, vinblastine, vinorelbine, cyclophosphamide</td>
</tr>
<tr>
<td>CYP2C9</td>
<td>efavirenz, ritonavir</td>
<td></td>
<td>cyclophosphamide</td>
</tr>
<tr>
<td>CYP2C19</td>
<td>efavirenz, amprenavir</td>
<td></td>
<td>cyclophosphamide, ifosfamide, thalidomide</td>
</tr>
<tr>
<td>CYP2D6</td>
<td>ritonavir</td>
<td></td>
<td>tamoxifen</td>
</tr>
<tr>
<td>CYP2B6</td>
<td>efavirenz, nelfanivir, ritonavir</td>
<td>nevirapine</td>
<td>cyclophosphamide, ifosfamide</td>
</tr>
<tr>
<td>CYP2E1</td>
<td>ritonavir</td>
<td></td>
<td>etoposide, dacarbazine</td>
</tr>
<tr>
<td>UGT1A1</td>
<td>atazanavir</td>
<td></td>
<td>irinotecan</td>
</tr>
</tbody>
</table>
HAART and Drug Transporters

<table>
<thead>
<tr>
<th>Drugs</th>
<th>ABCB1</th>
<th>ABCC1</th>
<th>ABCG2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Substrate</td>
<td>Inhibitor</td>
<td>Substrate</td>
</tr>
<tr>
<td>NRTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abacavir (ABC)</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Didanosine (DDI)</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Lamivudine (3TC)</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Stavudine (D4T)</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Zalcitabine (ddC)</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Zidovudine (AZT)</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>NNRTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate</td>
<td>+++</td>
<td>++</td>
<td>+/-</td>
</tr>
<tr>
<td>NNRTI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevirapine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efavirenz</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amprenavir</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Indinavir</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lopinavir</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>++</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tipranavir</td>
<td>+++</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Drug Transporters and Chemotherapy

<table>
<thead>
<tr>
<th>Chemotherapy Transporter Substrates</th>
<th>ABCB1</th>
<th>ABCC1</th>
<th>ABCG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinomycin D</td>
<td></td>
<td></td>
<td>Mitoxantrone</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td></td>
<td></td>
<td>Methotrexate</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td></td>
<td></td>
<td>Irinotecan</td>
</tr>
<tr>
<td>Docetaxel</td>
<td></td>
<td></td>
<td>Topotecan</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td></td>
<td></td>
<td>Imatinib</td>
</tr>
<tr>
<td>Epirubicin</td>
<td></td>
<td></td>
<td>Erlotinib</td>
</tr>
<tr>
<td>Idarubicin</td>
<td></td>
<td></td>
<td>Gefitinib</td>
</tr>
<tr>
<td>Vinblastine</td>
<td></td>
<td>Etoposide</td>
<td></td>
</tr>
<tr>
<td>Vincristine</td>
<td></td>
<td>Teniposide</td>
<td></td>
</tr>
<tr>
<td>Etoposide</td>
<td></td>
<td>Daunorubicin</td>
<td>Mitoxantrone</td>
</tr>
<tr>
<td>Teniposide</td>
<td></td>
<td>Doxorubicin</td>
<td>Methotrexate</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td></td>
<td>Epirubicin</td>
<td>Irinotecan</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td></td>
<td>Melphalan</td>
<td>Topotecan</td>
</tr>
<tr>
<td>Epirubicin</td>
<td></td>
<td>Vincristine</td>
<td>Imatinib</td>
</tr>
<tr>
<td>Idarubicin</td>
<td></td>
<td>Vinblastine</td>
<td>Erlotinib</td>
</tr>
<tr>
<td>Vinblastine</td>
<td></td>
<td></td>
<td>Gefitinib</td>
</tr>
<tr>
<td>Etoposide</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Since introduction of HAART, NHL and KS incidence has decreased

• Incidence of other cancers has increased related to other risk factors – immunosuppression, viral coinfections, smoking

• Cancers occur at an increased rate even in the absence of AIDS
Summary

• Treatment of HIV-cancer without treatment of HIV rarely works

• Treatment strategies similar for non-HIV infected individuals

• Stigma surrounding HIV infection may prevent accurate diagnosis and treatment.

• Prevention via risk factor control and screening
Important Outstanding Question in the Epidemiology of HIV-Associated Malignancies

• Incidence
 – Will trends in ADCs in resource-limited settings mirror the US/Europe?
 – Impact of ART on NADCs in resource-rich and resource-poor regions
 – Pediatric HIVAM in long-term survivors

• Etiology/Risk Factors
 – Contribution of immunodeficiency and HIV replication to cancer incidence
 – Role of « traditional » cancer risk factors (tobacco, obesity, etc.) on HIVAM
 – Novel infectious etiologies of cancer in HIV-positive persons
Thank you!