HIV, HBV, HCV
Virology

Anna Maria Geretti
Institute of Infection & Global Health
University of Liverpool
• Many similarities
• Several fundamental differences
• High-level replication: HIV 10^{10}, HBV 10^{11}, HCV 10^{12} particles/day
• Rapid clearance of newly produced virus
• High mutation rate → quasispecies
• Some mutations detrimental, some allow escape
Antiviral resistance

- Drug resistant variants are produced spontaneously during virus replication
 - Single, double, and even triple mutants emerge daily in untreated patients – persistence as replicating variants directly related to the fitness cost of the mutations
 - “Tolerance” for mutations is HCV > HIV > HBV
Emergence & evolution of HIV drug resistance

Single mutant → Double mutant → Triple mutant
Virus without resistance mutations

Virus with resistance mutations

Virus with resistance and compensatory mutations

Compensatory mutations
HCV genetic variability

NS3: 42% of amino acid conserved among all genotypes

NS5A: 46% of amino acid conserved among all genotypes

NS5B: 55% of amino acid conserved among all genotypes
HIV

RNA virus	• Chronic infection
	• Without treatment, most people develop AIDS and die within ~10 years (7.5 to 11.6)1,2
	• Non-AIDS HIV-related disease
Latent reservoir as integrated provirus	
Antiviral therapy controls but does not eradicate HIV	
Life-long therapy required to suppress virus replication	
PrEP and PEP	

The HIV virology timeline

- HIV-1 isolated
- HIV-1 genome sequenced
- HIV replicates at high levels throughout the infection
- Plasma HIV RNA ('viral load') suppression as goal of therapy
- Highly active antiretroviral therapy
- HIV replication causes disease through immune activation & inflammation
- HIV eradication research

Timeline:
- 1982
- 1985
- 1991
- 1995
- 1996
- 2009
- 2010
Primary HIV infection

• Encompasses the first **6 months** after infection
• Presents symptomatically in **23-92%** of individuals\(^1\)-\(^14\)
 – *Usually clinically mild, temporary and self-limited*
• Characterised by **high levels of virus replication**\(^15\)
• High risk of onward **transmission**
 – *Can contribute to >50% of all transmissions within focussed epidemics*\(^16\)
 – *Exacerbated by concomitant acquisition of STIs*\(^17\)
• Viral dissemination and establishment of long-lived **viral reservoir** occurs rapidly after HIV acquisition\(^18\)-\(^21\)

STIs = Sexually Transmitted Infections
HIV replication

Attachment

Fusion

Release of RNA

Reverse transcription

Integration

Transcription

Assembly

Maturation & budding
Mechanisms of HIV genetic evolution

1. Errors by viral reverse transcriptase
 - \(\sim 1 \) mis-incorporation per genome round

2. Errors by cellular RNA polymerase II

3. APOBEC-driven G \(\rightarrow \) A hypermutation
 - Deamination of cytosine residues in nascent DNA

4. Recombination between HIV strains
HIV replication resumes if therapy is stopped

- Antiretroviral therapy cannot achieve HIV eradication
- After stopping therapy HIV replication resumes to pre-treatment levels
- A few exceptions exist
HIV DNA forms

Host cell

Nucleus

HIV RNA

Linear HIV DNA

Integration

Host DNA

Proviral DNA

HIV RNA

2-LTRc

1-LTRc
Effect of fully suppressive ART on markers of HIV persistence

Mean difference per 10 years of suppressive ART

- Integrated HIV-1 DNA
- Total HIV-1 DNA
- 2-LTRc DNA
- Residual plasma HIV-1 RNA

log-transformed variables

Ruggiero. EBiomed 2015
Targets of therapy

- Attachment
- Fusion
- Release of RNA

- CCR5 antagonists
- Protease inhibitors
- RT inhibitors
- Integrase inhibitors
- Fusion inhibitors

- Reverse transcription
- Integration
- Transcription
- Maturation & budding
Maturation & budding

Polyprotein

Protease

Cleaved Proteins

Ribosome

Viral mRNA

HIV Structural Proteins
- HIV Reverse transcriptase/Polymerase

Two mechanisms of inhibition
- Competitive – NRTIs
- Allosteric – NNRTIs
DNA chain terminated

Template strand

Primer strand

NRTI

DNA chain terminated

5'
Mechanisms of NRTI resistance

- T215Y (AZT, ABC, ddl, d4T, TDF)
- M184V (3TC, FTC)
Mechanisms of NRTI resistance

- T215Y
- M184V

Antagonised by M184V
Replicative capacity ("fitness") of integrase resistant mutants

![Bar chart showing replicative capacity of integrase resistant mutants.](image)
Codon usage at integrase position 140 in B vs. non-B subtypes
HCV

| RNA virus | \- Chronic infection \(\sim 75-80\%\) \\
| | \- Cirrhosis (41\% over 30 years), hepatocellular carcinoma \\
| | \- Extra-hepatic disease increasingly recognised\(^1,2\) \\
| | \- No stable or latent reservoir \\
| | \- Simple life cycle \\
| | \- Curable with antiviral therapy |

![Hepatitis C Virus](image)
HCV replication

- Receptor binding and endocytosis
- Fusion and uncoating
- Transport and release
- Virion assembly
- Translation and polyprotein processing
- RNA replication

Antiviral targets & drug classes

NS5A Inhibitors
- Ledipasvir
- Daclatasvir
- Ombitasvir
- Elbasvir
- Velpatasvir

NS5B Polymerase Inhibitors
- Nucleoside/nucleotide analogues: Sofosbuvir
- Non-nucleoside analogues: Dasabuvir

NS3 Protease Inhibitors
- Telaprevir
- Boceprevir
- Simeprevir
- Paritaprevir/ritonavir
- Grazoprevir
Efficacy of antiviral therapy: Overview

SVR rates in patients **without** cirrhosis
(NB: no head-to-head studies)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Treatment</th>
<th>SVR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gt 1/4</td>
<td>PI + SOF</td>
<td>97</td>
</tr>
<tr>
<td>Gt 1/4</td>
<td>DCV + SOF</td>
<td>97</td>
</tr>
<tr>
<td>Gt 1/4</td>
<td>SOF/LDV</td>
<td>99</td>
</tr>
<tr>
<td>Gt 1/4</td>
<td>PI/r/NS5A + NS5B +/- RBV</td>
<td>96</td>
</tr>
<tr>
<td>Gt 2</td>
<td>SOF + RBV</td>
<td>97</td>
</tr>
<tr>
<td>Gt 3</td>
<td>DCV + SOF</td>
<td>96</td>
</tr>
</tbody>
</table>

SVR = Sustained Virological Response; Gt = Genotype; PI = protease Inhibitor (r = ritonavir); SOF = sofosbuvir; DCV = daclatasvir; LDV = ledipasvir; RBV = ribavirin

Risk of re-infection after SVR\(^1\)

- **Low risk**
 - 43 studies
 - \(N = 9,419\)
 - Avg. FU = 4.1±2.1y
- **High risk (IDUs/prisoners)**
 - 16 studies
 - \(N = 819\)
 - Avg. FU = 2.9±1.6y
- **HIV/HCV co-infected**
 - 7 studies
 - \(N = 833\)
 - Avg. FU = 3.1±1.2 years

Relapse of IDU predicts risk of re-infection\(^2\)

Characteristics of current DAAs

<table>
<thead>
<tr>
<th>DAA Class</th>
<th>Potency</th>
<th>BL RAS</th>
<th>TE RAS</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS3 Protease</td>
<td>+++ to ++++</td>
<td>Relatively common</td>
<td>Highly common</td>
<td>Simeprevir, Paritaprevir, Grazoprevir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS5B Polymerase</td>
<td>++ to ++++</td>
<td>Rare</td>
<td>Rare to uncommon</td>
<td>Sofosbuvir</td>
</tr>
<tr>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS5B Polymerase</td>
<td>++ to +++</td>
<td>Common</td>
<td>Highly common</td>
<td>Dasabuvir</td>
</tr>
<tr>
<td>Non-NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS5A</td>
<td>++++</td>
<td>Common</td>
<td>Highly common</td>
<td>Ledipasvir, Daclatasvir, Ombitasvir, Elbasvir</td>
</tr>
</tbody>
</table>

BL = Baseline; TE = Treatment-Emergent; RAS = Resistance-Associated Substitutions
NA = Nucleoside / Nucleotide Analogue; Non-NA = Non-Nucleoside Analogue
HBV

<table>
<thead>
<tr>
<th>DNA virus</th>
<th>Vaccine</th>
<th>Persistence as cccDNA, may integrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Chronic infection in >90% children, <5% adults</td>
<td>• Cirrhosis (~30%)</td>
<td>• Several replicative states</td>
</tr>
<tr>
<td>• Hepatocellular carcinoma (with/without cirrhosis)</td>
<td>• Extra-hepatic disease</td>
<td>• Antiviral therapy not always required, controls but does not eradicate HBV, probably life-long</td>
</tr>
</tbody>
</table>

- Antivirals work as PrEP
HBV replication
HBV drug targets

Nucleoside and nucleotide analogues
- Lamivudine*
- Adefovir
- Entecavir*
- Telbivudine
- Tenofovir*
- Emtricitabine*
Incidence of HBV drug resistance

Years 1-5; first-line therapy

LAM = Lamivudine
ADV = Adefovir
LdT = Telbivudine
ETV = Entecavir
TDF = Tenofovir
Drug resistance with HIV, HBV, HCV

- Drug-resistant mutants emerge “spontaneously” during virus replication
- Tolerance for mutation is HCV > HIV > HBV
- Virus replication under drug pressure drives expansion of the mutants – *Natural evolution ➔ increasing resistance & fitness*
- If therapy is stopped, drug susceptible virus tends to outgrow resistant mutants selected by therapy – *mutants persist as enriched minority species*
- Mutants are archived in HIV DNA provirus and HBV cccDNA
- No archive for HCV
The barrier to resistance is expression of multiple interacting factors

- Virus sequence
- Phenotypic effect of individual mutations
- No. of mutations required to reduce drug susceptibility
- Fitness cost of the mutation
- Ease of emergence of compensatory adjustments

- Drug potency
- Mode of interaction between drug and target
- Drug concentration
- Drug combination
- Antagonism or synergism between resistance pathways

- Viral load
- Host genetics
- Host immune function
- Reservoirs of replications
- Disease stage

More than the sum of each drug in a regimen
Your turn 😊
Which of the following correctly describes HIV?

1. RNA virus, high replication during AIDS phase only
2. RNA virus, high replication, stable genetic make-up
3. RNA virus, high replication, rapid genetic evolution
Your turn 😊
Which of the following correctly describes HIV?

1. RNA virus, high replication during AIDS phase only
2. RNA virus, high replication, stable genetic make-up
3. RNA virus, high replication, rapid genetic evolution
Your turn 😊

Which of the following correctly describes HBV?

1. HBV polymerase lacks reverse transcriptase activity

2. The genomic structure favours rapid emergence of resistance

3. Resistance is less of a problem with 3rd gen drugs
Your turn 😊
Which of the following correctly describes HBV?

1. HBV polymerase lacks reverse transcriptase activity
2. The genomic structure favours rapid emergence of resistance
3. Resistance is less of a problem with 3rd gen drugs
Your turn 😊
Which of the following correctly describes HCV?

1. Resistance is created by suboptimal therapy
2. Resistance is selected by suboptimal therapy
3. Resistance is archived in the nucleus of hepatocytes
Your turn 😊
Which of the following correctly describes HCV?

1. Resistance is created by suboptimal therapy
2. Resistance is selected by suboptimal therapy
3. Resistance is archived in the nucleus of hepatocytes
HIV tropism defined by co-receptor use

Naive CD4 cells
- Must be activated to memory phenotype to become target of R5

Memory CD4 cells
- Activated to memory phenotype

Macrophages
- Activated to memory phenotype

CD4
- Activated to memory phenotype

CXCR4
- Activated to memory phenotype

CCR5
- Activated to memory phenotype

Esté Lancet 2007