Malignancies in HIV

Prof. S. DE WIT
Saint-Pierre University Hospital
Brussels, Belgium
HIV and cancer

• AIDS-defining malignancies:
 - Kaposi’s sarcoma
 - Non Hodgkin lymphoma 1985
 - Cervical cancer 1993

• Non AIDS-defining malignancies (NADM) is increasing
 - Linked with viruses: HPV (Anal), HBV and HCV (Liver), EBV (HL)
 - Not linked with (identified) viruses
Increased rates of nADCs. Why?

- Increasing survival of patients with HIV might be associated with an increase of traditional cancer risk
- Aging of the HIV population
- Long-term toxicity of ART?
Increased rates of nADCs. Why?

Other possible explanations:

- Confounding by shared lifestyle cancer risk factors

 Tobacco use
 - MSM have nearly double the rate of tobacco use compared to all U.S. men: 48% vs 29% (Stall 1999)

 A role of HIV through its effect on immune deficiency

 Importance:
 - If immune deficiency is responsible, then reversing immune deficiency might decrease cancer risk
Incidence of first NADM (with 95% CI) stratified by different indicators of immunosuppression

- **Latest CD4 (cells/mm\(^3\))**
 - <100 - 200 - 300 - 400 - 500 - 500

- **Lagged CD4 (cells/mm\(^3\)), 6 months**
 - <100 - 200 - 300 - 400 - 500 - 500

- **Nadir CD4 (cells/mm\(^3\))**
 - <100 - 200 - 300 - 400 - 500 - 500

- **Time-averaged CD4 (cells/mm\(^3\))**
 - <100 - 200 - 300 - 400 - 500 - 500
Incidence of first NADM (with 95% CI) stratified by duration of immunosuppression (years)

Rate /100 PYRS

0,4

0,8

1,2

1,6

2

2,4

<200 cells/mm³

RR /year: 1.05 (1.04, 1.06), p=0.0001

<100 cells/mm³

RR /year: 1.05 (1.03, 1.07), p=0.0001

Years, duration of immunosuppression
Incidence of first NADM (with 95% CI) stratified by indicators of viraemia

Latest HIV RNA

- RR /log higher (log 10 copies/ml): 1.05 (0.99, 1.13), p=0.13

AUC for HIV RNA

- RR /unit: 1.04 (1.00, 1.09), p=0.07
All cancer crude and standardized incidence rates by HIV status and calendar period and P values for incidence rate period trend.

HIV+, HIV-infected; IR, incidence rate
Cancer group standardized incidence rates (per 100,000 person-years) by HIV status and calendar period, standardized incidence rate ratios with 95% confidence intervals by period, and P values for standardized incidence rate ratio period trend.

ADC, AIDS-defining cancer; HIV+, HIV-infected; IR, standardized incidence rate; IRR, standardized incidence rate ratio; NADC, nonAIDS-defining cancer; Nonvirus-NADC, nonvirus-related nonAIDS-defining cancer; Virus-NADC, virus-related nonAIDS-defining cancer. Note that Y-axis scale varies by cancer group.
Non AIDS malignancies

- Disparities in access to care and to treatment in the US (not in France)
- Cancer specific mortality higher in HIV patients in the US (HR ranging from 1.28 (lung) to 2.64 (breast) for different cancer, after adjustment for cancer treatment)

- But: Is it linked to HIV status or to demographic and social issues?
Non AIDS malignancies

- 34 % of causes of death in France in the cART era
- Relative risk highly variable:
 - Anal cancer: RR: 47
 - Hodgkin lymphoma: RR: 19
 - Lung cancer: RR: 3.5
 - Liver cancer: RR: highly dependent of the frequency of HCV co-infection
 - Breast cancer: RR: <1
 - Prostate cancer: RR: <1

- Impact of age is minimal except for liver cancer (11 y younger)
- Early HIV treatment and CD$_4$ >500 seem to reduce RR for lung cancer but not for the 3 others
Hodgkin disease

• Due to co-infection with EBV
 – Co-infection rates 75 to 100%, vs 20 to 50% in HIV- HL

• More aggressive disease
 – histology: mixed cellularity, lymphocyte depleted
 – B symptoms present (fevers, sweats, weight loss)
 – Extra-nodal disease common (75 to 90%)
 – Bone marrow involvement common (40 to 50%)

• Effect of HAART therapy on risk unclear, contradictory
Hepatocellular carcinoma

- Incidence rate 7 times higher in HIV +
- Due to Hepatitis B and C co-infection
- Lower risk in HIV patients on HAART (Only NADC)
- Higher risk of extrahepatic metastases, poorer outcome
- Treatment similar as in HIV negative patients, including transplantation.
Hepatocellular carcinoma

- Screening recommended for co-infected patients

- HCV clearance does not abrogate the risk but attenuates it by 50-75%

Treatment:
- Liver transplantation
- Resection
- Radiofrequency ablation

GUIDELINES

Screening for hepatocellular carcinoma
- Ultrasound (US) every 6 months
 Alpha-foetoprotein is a suboptimal surveillance tool because of low sensitivity and specificity
- In case of suspicious lesions on US, perform CT scan (+arterial phase) or dynamic contrast-enhanced MRI
- Confirm diagnosis by fine needle aspiration or biopsy should CT scan or MRI be inconclusive
Lung cancer
Excess of risk of lung cancer in HIV

• Hypotheses for causal factors...
 ➢ increased frequency of smoking in HIV population, but intensity and duration not different
 ➢ HIV status is possible, but the mechanisms remain unknown:
 – degree of immune deficiency
 – duration of immune deficiency
 – oncogenic role of HIV *per se*
 – other oncogenic virus
 – role of HAART
Summary of the Proposed Mechanisms Linking HIV With Lung Cancer

<table>
<thead>
<tr>
<th>Theory</th>
<th>Mechanisms</th>
<th>Key References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct oncogenic effect of HIV</td>
<td>Virus-inducing microsatellite alterations and widespread genomic instability.</td>
<td>Wistuba et al<sup>43</sup></td>
</tr>
<tr>
<td></td>
<td>Tat, an essential gene for HIV-1 replication, increases expression of</td>
<td>el-Solh et al<sup>44</sup></td>
</tr>
<tr>
<td></td>
<td>protooncogenes and proliferation of the human adenocarcinoma cell line</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by downregulating tumor suppressor gene p53.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Downregulation of HIV Tat-interacting protein (TIP30) has been found</td>
<td>Baker et al<sup>46</sup></td>
</tr>
<tr>
<td></td>
<td>to promote metastasis of lung cancer.</td>
<td>Tong et al<sup>46</sup></td>
</tr>
<tr>
<td>HIV-induced immunosuppression</td>
<td>Conflicting evidence, wherein immunosuppression may lead to a reduction in</td>
<td>Bower et al<sup>15</sup></td>
</tr>
<tr>
<td></td>
<td>tumor surveillance, thus enabling tumor growth.</td>
<td>Engels et al<sup>47</sup></td>
</tr>
<tr>
<td>Chronic inflammation</td>
<td>Chronic inflammation has been recognized as a risk factor for lung cancer.</td>
<td>Engels<sup>48</sup></td>
</tr>
<tr>
<td></td>
<td>Individuals with HIV infection and chronic pneumonia and asthma are</td>
<td>Shebl et al<sup>49</sup>, Kirk et al<sup>50</sup></td>
</tr>
<tr>
<td></td>
<td>at higher risk of lung cancer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The rate of pneumonia is nearly six times higher in patients with HIV</td>
<td>Sogaard et al<sup>50</sup></td>
</tr>
<tr>
<td></td>
<td>infection and CD4 counts > 500 cells/µL than in control subjects without HIV.</td>
<td></td>
</tr>
<tr>
<td>Cigarette smoking</td>
<td>Smoking is an independent risk factor for lung cancer in individuals with</td>
<td>Guiguet et al<sup>58</sup></td>
</tr>
<tr>
<td></td>
<td>HIV infection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smoking is two to three times more prevalent among individuals with HIV</td>
<td>Engels et al<sup>58</sup>, Giordano and Kramer<sup>51</sup></td>
</tr>
<tr>
<td></td>
<td>infection than in the general population.</td>
<td></td>
</tr>
<tr>
<td>IV drug use</td>
<td>IV drug users with HIV infection have an increased risk of lung cancer</td>
<td>Serraino et al<sup>52</sup></td>
</tr>
<tr>
<td></td>
<td>compared with nonusers with HIV.</td>
<td></td>
</tr>
</tbody>
</table>

Tat = transactivator of transcription.
Lung Cancer

• Most frequent NADC in HAART era
• Incidence 2-4 fold higher than general population
 ➢ SIRS between 2 and 3 and stable over time
• Diagnosed at younger age with advanced disease and primarily in smokers
• Adenocarcinoma is most frequent sub-type
• No clear screening strategy
• No argument to treat differently than non-HIV infected patients
Lung cancer and age

- Incidence higher in men but relative risk compared with the general population is higher in women

- Prospective screening of lung cancer by CT Scan poorly effective in HIV patients below 55 y of age
- Insufficient data to recommend lung cancer screening with low dose CT in asymptomatic persons
HAART and chemotherapy

• Many patients will receive HAART and chemotherapy concurrently with high likelihood of drug interactions and overlapping toxicities

• Many antiretroviral agents are substrates and/or inhibitors or inducers of cytochrome P450 system (CYP)

 ➢ Many anti-neoplastic drugs also metabolized by CYP system leading to either drug accumulation and possible toxicity or decreased efficacy
Use of antineoplastic agents in cancer patients with HIV/AIDS

Michelle A. Rudek, Ph.D.1, Professor Charles Flexner, M.D.2,3, and Professor Richard F. Ambinder, M.D.1,3

1Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
2Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
3Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract

In the era of highly active antiretroviral therapy (HAART), patients with human immunodeficiency virus (HIV) have reduced morbidity and mortality of AIDS-related complications. However, there is an increase in the prevalence of AIDS-defining and non-AIDS-defining cancers. This article provides an up-to-date review of management of HAART pharmacotherapy in the context of cytotoxic chemotherapy or targeted antineoplastic agents.
HPV and cancer in HIV patients
Persistent Infection

5-10% If HIV negative

20-30% If HIV positive
Cervical Intraepithelial Neoplasia

HISTOLOGY (BIOPSY)

- **CIN I**: Mild dysplasia, lower one-third of epithelium. The full complement of HPV DNA and proteins (Early and Late) are produced. Infectious virus is produced in the mature squamous cell layer.
- **CIN 2**: Moderate dysplasia, lower two-thirds of epithelium. More extensive production of E6 and E7 proteins and less extensive production of viral DNA and late proteins than CIN 1.
- **CIN 3**: Severe dysplasia, total involvement of epithelium. Very high level of production of E6 and E7, and little production of late proteins or viral DNA.

Smear

- **LG-SIL** Squamous Intraepithelial Lesions
- **HG-SIL**
- **CYTOLOGY (Smear)**
HPV-induced cancers

- Cervix
- Anus
- Vagina
- Vulva
- Penis

- Oro-pharyngal

High risk HPV genotypes:
- 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68

70%
HPV and HIV interactions

• HIV increases HPV infection and HPV-induced lesions

➢ Molecular level
 In vitro and ex vivo:
 • Adding HIV proteins or cytokines
 • Increases epithelial tight junction disruption
 • Enhances the expression of E6 E7 oncoproteins

➢ Clinical level

Vernon. Virus Res 1993
Tugizov. Virology 2013
The burden of HPV infections and induced lesions in HIV-positive patients

• **HPV Infection**
 - Prevalence and incidence of HPV infection are higher.
 - HPV viral load are higher. More infections with multiple genotypes.
 - Clearance is decreased and recurrence of latent infection are frequent.
 - Persistent infection is significantly higher.

• **Dysplastic lesions**
 - Prevalence and incidence of dysplastic lesions are higher.
 - Spontaneous regression are less frequent.
 - Recurrence after treatment are more frequent.

• **Cancer**
 - Incidence 6-10 times higher for the cervix
 - Incidence 40-90 times higher for the anus

CD4 cell count decreases
HIV Viral load increases
Screen and treat approach in limited resource setting

Cervical Cancer Prevention in HIV-infected women using the « see and treat » approach: Testing for HRHPV; results after 2 hours which allows treatment the very same day in

- South Africa
 Kuhn and al. *AIDS* 2010

- Botswana
 Ramogola-Masire D. *J Acqui Immune Def Syndr* 2012

- India
 Joshi S. *AIDS* 2013
Infection by HPV and HPV-induced lesions in HIV-positive MSM

- **HPV Prevalence:**
 - all HPV: 93% (vs. 64%)
 - HR HPV: 74% (vs. 37%)
 - Plateau from young to 50-60 years old

- **Prevalence HGAIN**
 - 43-52%
 - In Belgium 25% (Libois A. EACS 2013)
 - Risk increases with age
 - 40-49 years: OR 3.09
 - >50: OR 4.78
 - Compared to <40 years

- **Incidence of HGAIN** (HR anuscopy):
 - 8.5-15.4% patients year
 - vs. 3.3-6% patients year in HIV-neg MSM

Machalek and al. The lancet oncol. 2012
Anal screening in HIV patients should be implemented... but questions remain for HIV-patients:

- How? High resolution anoscopy and histology (cytology for triage): Training, material, side effects

- Who?
 - MSM: Incidence cancer 80/100,000 persons-year
 - Women: Incidence cancer 16/100,000 persons-year
 - Prevalence of ≥AIN2: 9% (2001-06) Hessol. AIDS 2009

- Should Anal screening be implemented for all women?

- Natural history of AIN could differ from CIN

Does cART prevent HPV infections or HPV-induced lesions?

- **NO**
 - **Design**: N
 - **Endpoints**: Duration of cART
 - **Palefsky**: Cross-S before <100 anal HPV prev. 6 months
 - **JAIDS 2001**
 - **Paramsothy**: Longitudinal 537 cervical HPV & SIL 24 months
 - **Obstet & Gyn 2009**: Decreased progression and increased regression of SIL but p=ns
 - **Shrestha**: Longitudinal 100 cervical HPV 14 months
 - **BMC Inf Dis 2010**: Incidence

- **YES**
 - **Design**: N
 - **Endpoints**: Duration of cART
 - **Heard**: Longitudinal 168 Regression of CIN 12 months
 - **AIDS 2002**: Better if cART (HR 1.93; 95% IC, 1.14-3.29)
 - **Fife**: Longitudinal 146 cervical HPV 24 months
 - **JAIDS 2009**: Prevalence decreased from 62% to 39% (p=.003)
 - **Minkoff**: Longitudinal 286 cervical HPV prev. 30 months
 - **JID 2010**: Incidence + SIL adherence & effecti.
 - **Reduction in HPV prevalence (22 to 14%), incidence (5 to 3/100 PV) & SIL prevalence; better clearance of SIL**
...more recently

Cohort of 652 women, 38 years, successfully treated for HIV, FU 61 months
Sustained viral suppression and higher CD4 T cell reduces the risk of persistent HRHPV and of cytological abnormalities
Konopnicki D. JID 2013

Factors affecting chance of high-risk HPV any time during study

- Younger than 30: 3.13 times higher chance
- CD4 count above 500 for more than 18 months: 12% lower chance
- Viral load below 50 copies for more than 40 months: 19% lower chance
What about HPV prevention?
Preventive Vaccine

Quadrivalent (HPV4)

Gardasil® Merck:
- L1 from HPV 6, 11, 16 and 18
- Approval for EMA & FDA: 2006
- 0, 2 and months 6

Bivalent (HPV2)

Cervarix® GSK:
- L1 from HPV 16 and 18 + ASO4
- Approval for EMA & FDA: 2007/9
- 0, 1 and 6 months
Preventive vaccine in HIV+ patients

Quadrivalent vaccine 4 studies

Studies on clinical efficacy?

- Phase IV 2010-2015: Thailand, Brazil, USA
- Gardasil vs Cervarix in women 15-25 years
 ongoing

Bivalent vaccine

- Good Immunogenicity
- Good Safety, no deleterious effect on CD4 nor VL
- Cellular immunity: HPV16/18 specific CD4+T cells response was substantially increased from month 2 to 12 in more than 82%

Levin. J AIDS. 2010
Wilkin. JID 2010

Weinberg A. JID 2012: Denny L. Vaccine. 2013
Levin. J AIDS. 2010
Wilkin. JID 2010
Ninevalent vaccine

• Gardasil 9® Merck
 ➢ 6, 11
 ➢ 16,18
 ➢ 31, 33, 45, 52, 58

• Study phase III comparing Gardasil9 to Gardasil
 ➢ N=14,000 females 16-26 years
 ➢ Efficacy for prevention of CIN2+, VIN2+ or VAN2+ (induced by HPV31/33/45/52/58): 97%

• Safety similar

• Approved by FDA in Dec 2014 and EMA in March 2015

• $13 more per dose: cost effective
Should we vaccinate HIV-positive patients?

- High burden of disease
- Good immune efficacy and tolerability
- The answer should be « Yes »!

We propose to vaccinate
 - Girls and boys
 - Young women and men up to 26 years
 - When treating high grade lesions