







# **HIV** and **HBV**

what's coming next

Moderator: Josep Maria Llibre, Spain

Joop Arends, Netherlands Andrew Ustianowski, UK





#### **Disclosures**

- Joop Arends
  - Advisory boards\*
    - ViiV, MSD, Janssen, Abbvie, Gilead, BMS
  - (research) grants\*
    - BMS, Abbvie, ViiV, MSD
- Andrew Ustianowski
  - Advisory boards & speaker fees
    - ViiV, MSD, Janssen, Abbvie, Gilead, BMS
  - (research) grants
    - Gilead



# Interactive presentation

















#### What do these 3 viruses have in common?

#### Human Immunodeficiency Virus (HIV) Anatomy







Picture of one Hepatitis C Virus









#### Advancement in viral drug therapeutics









 Mechanistic insights into viral life cycles and drug therapy targets have also accelerated treatment development in other viral disease like viral hepatitis B and C.









#### **Discovery of in vitro replicon systems**

HIV 1984 **HCV** 2003

HBV 2013

#### **Discovery of drug targets**

HIV 1964 - AZT HCV 2003 – NS3 protease

<u>HBV</u> 2008 - NRTI



# Advancements in antiviral treatment



Brussels
December 16
2016















### Similarities in development between 3 viruses

| Topics                                            | HIV<br>in 2000 | HCV<br>in 2014 | HBV<br>in 2020 |
|---------------------------------------------------|----------------|----------------|----------------|
| Newly identified, effective drugs                 | ✓              | ✓              | ✓              |
| High cost of drugs and tests                      | ✓              | ✓              | ✓              |
| Complex drug regimens, side effects               | ✓              | ✓              | ✓              |
| Limited data on epidemiologic situation           | ✓              | ✓              | ✓              |
| Lack of advocacy for global access                | ✓              | ✓              | ✓              |
| Lack of political and financial global commitment | ✓              | ✓              | ✓              |







# Major advancements made over time

|                                              | Progress over time                   |                                        |                                      |  |
|----------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--|
|                                              | HIV<br>(2000->2010)                  | HCV<br>(2014->2024)                    | HBV<br>(2020->2030)                  |  |
| Cost of drugs                                | >\$10,000 -> <\$100<br>/patient/year | >\$10,000 -> <\$100<br>/patient/course | <\$1000-> >\$10,000<br>/patient/year |  |
| Global funding                               | Low -> Major global initiatives      | Medium -> Major global initiatives     | Major global initiatives             |  |
| Numbers on treatment in low-income countries | ~50,000 -> 10 million                | ?                                      | ?                                    |  |









# Rapid development of drug resistance with mono-therapy



.-9

Kieffer TL et al. Hepatology 2007;46(3):631-9









# Where are we going with HBV treatments?

Firstly we need to briefly run over the life-cycle....











#### What about viral entry into liver cell and then nucleus?



- Viral envelope binds to cell membrane
  - Receptor = sodium taurocholate co-transporting polypeptide
    - (a bile salt transporter)
- Then it is uncoated and viral DNA enters into cell nucleus...
  - ...and viral genome is converted to cccDNA
    - = "covalently closed circular DNA"
    - = HBV 'mini-chromosome'







#### Transcription and translation....



- Products then encapsulated within virus core particle
  - RNA pregenome, nucleocapsid & polymerase proteins







#### And then it is released...



- Virus contains a new negative strand DNA which partially synthesises a positive stand
- Coated by envelope proteins → Complete virion ready for release
  - But some is also recycled back into the nucleus and replenishes ccc-DNA







## Not all the proteins end up in the virus particle....



#### Why??

- Immunomodulatory
- Tolerogenic....
- Inflammatory....







# OK.. What drugs do we have at present??

- Nucleos(t)ide analogues
  - Tenofovir disoproxil
  - Adefovir
  - Entecavir
  - Lamivudine
  - Emtricitabine
  - Telbivudine
- Newer Nucs
  - Tenofovir alafenamide
  - Besifovir









### Interferon alpha

- Naturally occurring immunomodulator
  - Multiple activities... not entirely clear which are most important
- Specifically

Induces an antiviral state in calls

- Induces degradation
- Inhibits cellular proli
- Immunomodulates i











# But we know this usually doesn't result in a proper 'cure'

 There is still active research into combining interferon and nucleos(t)ides...

 But what are the newer possibilities being actively explored?









#### Where else could be targeted??











#### SiRNA: RNA interference therapy

# Reduction of HBsAg in treatment-naïve CHB patients after a single dose of 4 mg/kg ARC-520



#### **Hepatocyte Targeting - ALN-HBV**

 N-acetyl galactosamine (GalNAc) ligand binds to asialoglycoprotein receptor (ASGPR)



Wing-Kin Sung et al. Nature Genetics 44:765 (2012)









#### Direct ccc-DNA inhibitors









#### JNJ-379: Effect on cccDNA in HBV-infected PHHs



Dose-dependent inhibition of cccDNA formation in presence of JNJ-379









#### Capsid Inhibitors











# Capsid assembly modulators

- CAMs induce the formation of two types of capsids in vitro
  - Empty capsids with normal geometry and size (class I MOA)
    - Phenylpropenamides (e.g. AT130) and sulfamoylbenzamide derivatives
  - Empty capsids with abnormal geometry and size (class II MOA)
    - Heteroaryldihydropyrimidines (e.g. BAY41-4109)

#### **Electron microscopy**

Recombinant HBV core dimers + 150mM NaCl +/- 30μM CAM (24h)







Berke et al. AASLD 2016







#### sAg secretion inhibitors























Elevation in serum anti-HBs correlated with extent of HBsAg reduction







#### And there are others...









#### NVR 3-778, a **HBV Core Inhibitor**, in HBeAg-Positive Patients

- HBeAg-positive CHB patients
- Serum HBV DNA >20,000 IU/mL
- ALT levels 1-7 times upper limit of normal
- Randomized to NVR 3-778 capsules at 4 doses (vs placebo) x 28 days



NVR 3-778 600 mg bd associated with mean 1.72 log<sub>10</sub> IU/mL HBV DNA reduction in 28 days







# Host-directed agents?

#### Immune stimulators

- Toll-like receptor agonists
  - TLR 7 (Lanford RE et al. Gastroenterology. 2013 Jun;144(7):1508-17, 1517.e1-10; Menne S et al. J Hepatol. 2015 Jun;62(6):1237-45)
  - TLR 9 (Goldstein and Goldstein, 2009)
- Lymphotoxin-b receptor agonists (Lucifora J et al. Med Sci (Paris). 2014 Aug-Sep;30(8-9):724-6)
- Others...

#### Checkpoint inhibitors

PD-, PD-L1, CTL-4 inhibitors etc.

#### Therapeutic vaccines

- S and Pre-S antigen vaccines
- DNA vaccines (especially of S)
- T cell vaccines











#### TLR agonists

#### CLINICAL EFFICACY

HBsAg changes during GS 9620 therapy



- HBsAg changes were minimal in all cohorts (no patients with >0.5-log10 declines in HBsAg at week 24)
- · No patients had HBsAg loss at week 24

#### IN VITRO HBV-SPECIFIC T CELL ANALYSIS

GS 9620 can induce a transient improvement of IL2 production by HBV-specific T cells



#### IN VITRO HBV-SPECIFIC T CELL ANALYSIS

The GS 9620 effect on IL2 production is detectable with HBV-specific but not with HBV-unrelated control peptides













#### But there are major issues...



It is quite likely that a single drug or target will not be sufficient

Therefore some kind of combination....

But how do we decide what to combine with what?

What do we mean by cure?









#### What are we aiming for and how do we know we have got there?





#### Table 1. A summary of clinical trials and their strategies for HBV treatment.

|     | Targets                                     | Compounds                                                   | Developer                             | Stage of development         | ClinicalTrials.gov identifier            |
|-----|---------------------------------------------|-------------------------------------------------------------|---------------------------------------|------------------------------|------------------------------------------|
| DAA | HBpol                                       | GS-7340; Tenofovir<br>Alafenamide (prodrug of<br>tenofovir) | Gilead                                | Phase 3                      | NCT01940471 and<br>NCT01940341           |
|     | HBpol                                       | AGX-1009 (prodrug)                                          | Agenix                                | Phase 3 (?)                  | No identifier found                      |
|     | HBpol                                       | Besifovir                                                   | IIDong Pharmaceutical                 | Phase 3                      | NCT01937806                              |
|     | HBpol                                       | CMX-157 (lipid acyclic<br>nucleoside phosphonate)           | Contravir                             | Phase 1                      | NCT02585440                              |
|     | HBc                                         | GLS-4<br>(Morphothiadine mesilate)                          | HEC Pharm/SUnshine                    | Phase 2                      | China-CFDA                               |
|     | HBc                                         | NVR 3-778                                                   | Novira Pharmaceuticals                | Phase 1                      | NCT02112799 &<br>NCT02401737             |
|     | HBs                                         | REP-2139 (nucleic acid polymers)                            | Replicor                              | Phase 2 for both HBV and HDV | NCT02565719 and<br>NCT02233075           |
|     | Viral RNAs                                  | siRNA: ARC-520/ARC-521                                      | Arrowhead                             | Phase 2                      | NCT02604212 and<br>NCT02604199           |
|     | Viral RNAs                                  | siRNA: ISIS-HBVRx                                           | lonis pharmaceuticals                 | Phase 1 or 2 (?)             | No identifier found                      |
| НТА | NTCP                                        | Myrcludex                                                   | Hepatera and<br>MYR GmbH              | Phase 2 for both HBV and HDV | Development in Russian<br>Federation     |
|     | Promotion of apoptosis in<br>infected cells | Birinapant                                                  | Tetralogic                            | Phase 1                      | NCT02288208                              |
|     | Prenylation/farnesylation                   | Lonafarnib                                                  | Eiger BioPharmaceuticals              | Phase 2 for HDV              | NCT02430181,<br>NCT02430194, NCT02511431 |
|     | Immune stimulation                          | Thymosin alpha                                              | Seoul National University<br>Hospital | Phase 4                      | NCT00291616                              |
|     | pDC stimulation                             | GS-9620 (TLR7 agonist)                                      | Gilead                                | Phase 2                      | NCT02166047 &<br>NCT02579382             |
|     | Immune stimulation                          | INO-1800                                                    | Inovio Pharmaceuticals                | Phase 1                      | NCT02431312                              |
|     | Immune stimulation                          | Cyt-107 (IL-7)                                              | Cythesis                              | Phase 1/2 (discontinued)     | NCT01027065                              |
|     | Immune stimulation                          | IFN-lambda                                                  | BMS                                   | Phase 2 (discontinued)       | NCT01204762                              |
|     | Adaptive responses                          | ABX-203                                                     | Abivax                                | Phase 2/3                    | NCT02249988                              |
|     | Adaptive responses                          | GS-4774 (therapeutic vaccine)                               | Gilead                                | Phase 2                      | NCT01943799 &<br>NCT02174276             |
|     | Adaptive responses                          | TG-1050 (therapeutic vaccine)                               | Transgene                             | Phase 1                      | NCT02428400                              |
|     | Adaptive responses                          | DV-601 (therapeutic vaccine)                                | Dynavax                               | Phase 1                      | NCT01023230                              |
|     | Adaptive response                           | HB-110                                                      | Genexine                              | Phase 1                      | NCT01641536                              |
|     | Adaptive responses                          | Nivolumab (Anti-PD1 mAb)                                    | Ono Pharmaceuticals/<br>BMS           | Phase 1/2 for HCC            | NCT01658878                              |

# There is a full pipeline for HBV drugs in development







# Do we need more and newer drugs for HIV?



- Viral suppression after start of combination antiretroviral therapy (cART) in previously treatmentnaïve individuals
- Other countries lower suppression rates
  - Compliance issues?
  - Resistance issues?









#### HIV drug development (1987-2013)









### What do we need more in future HIV drugs?

- More convenience
  - NRTI and PI
- Less side-effect / drug-drug interactions
  - NNRTI

- New drug classes
  - Maturation inhibitors, CD4 attachment/ entry inhibitors









## Newer Investigational ART Agents (partial list)

|           | NRTI                                          | NNRTI      | PI                                       | Entry Inh                               | II                    | Maturaton<br>Inhibitor |
|-----------|-----------------------------------------------|------------|------------------------------------------|-----------------------------------------|-----------------------|------------------------|
| Phase 3   |                                               | doravirine |                                          | Fostemsavir                             | cabotegravir          |                        |
| Phase 2   | apricitabine<br>dexelvucitabine<br>festinavir | BILR 355   |                                          | cenicriviroc<br>ibalizumab<br>Pr-232798 | GS-9883               | BMS-955176             |
| Phase 1/2 | elvucitabine                                  |            | TMC 310911                               | HGS004                                  |                       |                        |
| Phase 1   | MK-8591<br>CMX157                             | RDEA 806   | CTP-298<br>CTP-518<br>PPL-100<br>SPI-256 | SCH532706<br>VIR-576                    | BI 224436<br>INH-1001 | GSK-2838232            |







### MK-8591 (EFdA)

- 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA)
- Non-obligate chain terminator
- Inhibits RT by preventing translocation (NRTTI)
- Potent antiviral activity (PBMC EC50 = 0.2 nM) with broad coverage (HIV-1, HIV-2, MDR strains)



- A single 10 mg oral dose in HIV-infected patients results in 1.6 log decrease in viral load at day 7-10
- Intracellular MK-8591-TP t<sub>1/2</sub> = 103 hr
- No evidence of resistance out to Day 10







### Cabotegravir (CAB, GSK 1265744)

- Integrase inhibitor similar to DTG; similar resistance
- Potent in HIV+ individuals (5, 10, 30, 60 mg oral
- Nanotechnology formulation; SC + IM injections
- T ½ 21-50 days!
- Supports monthly or quarterly dosing Safety: ISR (all mild) and nodules with SC dosing

#### **Pharmacokinetics**

Figure 4. Mean Plasma S/GSK1265744 Concentration-Time Profiles Following Single Dose LAP Formulation Administration











#### LATTE-2: CAB + RPV IM Maintenance

Phase 2b multicenter, parallel group, open-label study
Study population: Rx-naïve individuals (N=309)









### LATTE-2: Virologic Suppression









#### LATTE-2 Week 32 Primary Endpoint: HIV-1 RNA <50 c/mL by Snapshot (ITT-ME)









#### LATTE-2: Injection Site Reactions

|                                   | Q8W IM<br>(n=115) | Q4W IM<br>(n=115) | IM subtotal<br>(N=230) |
|-----------------------------------|-------------------|-------------------|------------------------|
| Number of injections              | 1623              | 2663              | 4286                   |
| Number of ISRs (events/injection) | 1054 (0.65)       | 1228 (0.46)       | 2282 (0.53)            |
| Grades                            |                   |                   |                        |
| Grade 1                           | 839 (80%)         | 1021 (83%)        | 1860 (82%)             |
| Grade 2                           | 202 (19%)         | 197 (16%)         | 399 (17%)              |
| Grade 3                           | 12 (1%)           | 10 (<1%)          | 22 (<1%)               |
| Grade 4                           | 0                 | 0                 | 0                      |
| Duration, days                    |                   |                   |                        |
| ≤7                                | 943 (89%)         | 1121 (91%)        | 2064 (90%)             |
| Median                            | 3.0               | 3.0               | 3.0                    |

- Most common ISR events overall were pain (67%), swelling (7%), and nodules (6%)
- Number of subjects reporting ISRs decreased over time, from 86% (Day 1) to 33% (Week 32)<sup>a</sup>
- 2/230 subjects (1%) withdrew as a result of injection reactions (Q8W)







#### Ibalizumab – HIV entry inhibitor

- Monoclonal antibody (im or iv) binding to CD4 receptor
- Dosing every 1-4 weeks
  - Phase 1/2-studies in 2004-2009<sup>1</sup>
- FDA orphan drug breakthrough designation



1. Kuritzkes DR et al. J Infect Dis. 2004 Jan 15;189(2):286-91; Jacobson JM et al. Antimicrob Agents Chemother. 2009 Feb;53(2):450-7; Norris D et al. 16th International AIDS Conference; August 13-18, 2006; Toronto, Canada





Brussels
December 16
2016



Navigation
Search
Print Page
Interactive Planning Tool (create your schedule here)
Abstracts in PDF

LB-6. Primary Efficacy Endpoint and Safety Results of Ibalizumab (IBA) in a Phase 3 Study of Heavily Treatment-Experienced Patients with Multi-Drug Resistant (MDR) HIV-1 Infection

Session: Oral Abstract Session: Late Breaker Oral Abstracts
Saturday, October 29, 2016: 11:20 AM
Room: 283-285



Documented resistance to at least 1 AVR from 3 classes









# Is compliance a possible drawbacks to these developments?

- Rheumatoid arthritis patients for longer treated at monthly intervals
- 775 RA patients registered in the Danish biologics database (DANBIO)
- Treatment as monotherapy

Fig. 2 Drug adherence, stratified by drug









# Are adverse events a possible drawbacks to these developments?

- Newly developed monoclonal antibodies reverse anticoagulant effects of DOACs
- Search for antidote against long-acting anti-HIV drugs in case of adverse events







# It isn't always new drugs that will lead to longer acting agents...







### **Implants**





Full-scale TAF-TFPD prototype device 4 cm long x 2-2.5mm diameter







#### **Osmotic Pump**



- This osmotic flow is directly proportional to the gradient of concentration of osmolytes in the osmotic chamber
- The inward H<sub>2</sub>O flow creates an increased pressure in the osmotic chamber, which exerts a force on the piston









#### Nano-channel Implants















#### Conclusions

- There are significant overlaps between HIV, HCV & HIV in many ways
  - But also significant differences
- We are just commencing a new era in HBV
  - Better understanding
  - New agents
    - But we have a long way to go...
- There are new agents for HIV
  - Especially those that will allow intermittent dosing
  - And there are technologies that might help too







# Thank you for your attention